On Vertex-Ply and Empty-Ply Proximity Drawings

25th Int. Symp. on Graph Drawing and Network Visualization

September 25-27 2017, Northeastern University, Boston, USA

Patrizio Angelini\(^1\) Steven Chaplick\(^2\) Felice De Luca\(^3\) Jiri Fiala\(^4\)
Jaroslav Hančl Jr.\(^4\) Niklas Heinsohn\(^1\) Michael Kaufmann\(^1\)
Stephen Kobourov\(^5\) Jan Kratochvíl\(^4\) Pavel Valtr\(^4\)

\(^1\)Wilhelm-Schickard-Institut für Informatik, Universität Tübingen, Germany
\(^2\)Lehrstuhl für Informatik I, Universität Würzburg, Germany
\(^3\)Università degli Studi di Perugia, Perugia, Italy
\(^4\)Department of Applied Mathematics, Charles University (KAM), Czech Republic
\(^5\)Department of Computer Science, University of Arizona, Tucson, USA
Ply of a straight-line drawing
Ply of a straight-line drawing

For each vertex, add a disk centered at it whose radius is half of the longest incident edge.
Ply of a straight-line drawing
Ply of a straight-line drawing

The drawing has ply 3
State of the art

- **Complexity of the testing problem**
 Testing whether a graph admits a drawing with ply 1 is NP-complete (equivalent to recognizing unit-disk contact graphs)
 [Di Giacomo et al. - IISA 2015]
State of the art

- **Complexity of the testing problem**
 Testing whether a graph admits a drawing with ply 1 is NP-complete (equivalent to recognizing unit-disk contact graphs)

 [Di Giacomo et al. - IISA 2015]

- **Classes always admitting drawings with low ply**
 Stars and binary trees always admit drawings with ply 2

 [Di Giacomo et al. - IISA 2015]

 Not all bounded-degree trees admit drawings with constant ply

 [Angelini et al. - GD 2016]
State of the art

- **Complexity of the testing problem**
 Testing whether a graph admits a drawing with ply 1 is NP-complete (equivalent to recognizing unit-disk contact graphs)
 [Di Giacomo et al. - IISA 2015]

- **Classes always admitting drawings with low ply**
 Stars and binary trees always admit drawings with ply 2
 [Di Giacomo et al. - IISA 2015]
 Not all bounded-degree trees admit drawings with constant ply
 [Angelini et al. - GD 2016]

- **Area requirements**
 Exponential area is required for stars
 (Max-degree-6) trees: logarithmic ply in polynomial area
State of the art

- **Complexity of the testing problem**
 Testing whether a graph admits a drawing with ply 1 is NP-complete (equivalent to recognizing unit-disk contact graphs)
 \[Di Giacomo et al. - IISA 2015\]

- **Classes always admitting drawings with low ply**
 Stars and binary trees always admit drawings with ply 2
 \[Di Giacomo et al. - IISA 2015\]
 Not all bounded-degree trees admit drawings with constant ply
 \[Angelini et al. - GD 2016\]

- **Area requirements**
 Exponential area is required for stars
 (Max-degree-6) trees: logarithmic ply in polynomial area
 \[Angelini et al. - GD 2016\] - \[Goodrich.Johnson - Poster today\]

- **Experimental results**
 \[De Luca et al. - WALCOM 2017\]
 \[Heinsohn and Kaufmann - next talk\]
Motivation

• Empirical observation that road networks have low ply, when interpreted as subgraphs of disk intersection graphs

[Eppstein, Goodrich - ACM SIGSPATIAL 2008]
Motivation

- Empirical observation that road networks have low ply, when interpreted as subgraphs of disk intersection graphs
 [Eppstein, Goodrich - ACM SIGSPATIAL 2008]

- Intuition that ply is related to stress
 [Di Giacomo et al. - IISA 2015]
 Confirmed by [De Luca et al. - WALCOM 2017]
Motivation

• Empirical observation that road networks have low ply, when interpreted as subgraphs of disk intersection graphs
 [Eppstein, Goodrich - ACM SIGSPATIAL 2008]

• Intuition that ply is related to stress
 [Di Giacomo et al. - IISA 2015]
 Confirmed by [De Luca et al. - WALCOM 2017]

• Intuition that ply is related to proximity drawings
 [Di Giacomo et al. - IISA 2015]
 Studied in this paper
Proximity drawings

A straight-line drawing in which, for every two vertices u, v, their proximity region is empty if (and only if) edge (u, v) exists.

The proximity region of two vertices $u, v \in G$ is a region of the plane determined by their position. Different proximity regions determine different proximity drawings:

- Gabriel graphs
Proximity drawings

A straight-line drawing in which, for every two vertices u, v, their proximity region is empty if (and only if) edge (u, v) exists.

The proximity region of two vertices $u, v \in G$ is a region of the plane determined by their position.

Different proximity regions determine different proximity drawings:

- Gabriel graphs
- Relative-neighborhood graphs
Proximity drawings

A straight-line drawing in which, for every two vertices \(u, v \), their proximity region is empty if (and only if) edge \((u, v)\) exists.

The proximity region of two vertices \(u, v \in G \) is a region of the plane determined by their position.

Different proximity regions determine different proximity drawings:

- Gabriel graphs
- Relative-neighborhood graphs
- Delaunay triangulations
Ply vs. proximity drawings

Proximity region for ply drawings
Ply vs. proximity drawings

Proximity region for ply drawings

Ply depends on disk overlapping and not on vertex-disk containment
Ply vs. proximity drawings

Proximity region for ply drawings

Ply depends on disk overlapping and not on vertex-disk containment

We define the \textit{vertex-ply} of a drawing as the ply computed only on the points where vertices are placed.
Vertex-ply of a straight-line drawing

We define the vertex-ply of a drawing as the ply computed only on the points where vertices are placed.

The drawing has vertex-ply 2.
Empty-ply drawings

When vertex-ply $= 1$, we say that the drawing is empty-ply.
Empty-ply drawings

When vertex-ply = 1, we say that the drawing is empty-ply.
What is the ply of an empty-ply drawing?
Relationship between ply and vertex-ply

Theorem

An empty-ply drawing has ply at most 5

In general, a drawing with vertex-ply h has ply at most $5h$
Theorem

An empty-ply drawing has ply at most 5

In general, a drawing with vertex-ply \(h \) has ply at most \(5h \)
Empty-ply drawings: properties

Property

Empty-ply drawings may be non-planar and non-connected (not true for other proximity drawings)
Empty-ply drawings: properties

Property
Empty-ply drawings may be non-planar and non-connected (not true for other proximity drawings)

Property
In an empty-ply drawing, the length of adjacent edges differs at most by a factor of 2
Empty-ply drawings: properties

Property

In an empty-ply drawing, no vertex has degree larger than 24
Empty-ply drawings: properties

<table>
<thead>
<tr>
<th>Property</th>
</tr>
</thead>
<tbody>
<tr>
<td>In an empty-ply drawing, no vertex has degree larger than 24</td>
</tr>
</tbody>
</table>
Empty-ply drawings: properties

Property

In an empty-ply drawing, no vertex has degree larger than 24
The graph $K_{1,24}$ (the star graph with 24 leaves) admits an empty-ply drawing
The graphs $K_{2,12}$, $K_{3,9}$, $K_{4,6}$, K_7 admit empty-ply drawings.
Empty-ply drawings of complete graphs

<table>
<thead>
<tr>
<th>Theorem</th>
</tr>
</thead>
<tbody>
<tr>
<td>The graphs $K_{2,12}$, $K_{3,9}$, $K_{4,6}$, K_7 admit empty-ply drawings</td>
</tr>
<tr>
<td>The graphs $K_{2,15}$ and K_8 do not admit empty-ply drawings</td>
</tr>
</tbody>
</table>
The theorem states which complete graphs admit empty-ply drawings and which do not. The graphs $K_{2,12}$, $K_{3,9}$, $K_{4,6}$, K_7 admit empty-ply drawings. The graphs $K_{2,15}$ and K_8 do not admit empty-ply drawings.
Empty-ply drawings of complete graphs

Theorem

The graphs $K_{2,12}$, $K_{3,9}$, $K_{4,6}$, K_7 admit empty-ply drawings.
The graphs $K_{2,15}$ and K_8 do not admit empty-ply drawings.
Empty-ply drawings of complete graphs

Theorem

The graphs $K_{2,12}, K_{3,9}, K_{4,6}, K_7$ admit empty-ply drawings.
The graphs $K_{2,15}$ and K_8 do not admit empty-ply drawings.
Empty-ply drawings of trees

Theorem

There exist 4-ary trees (maximum degree 5) not admitting any empty-ply drawing
Empty-ply drawings of trees

Theorem

There exist 4-ary trees (maximum degree 5) not admitting any empty-ply drawing
Theorem

There exist 4-ary trees (maximum degree 5) not admitting any empty-ply drawing

![Diagram of a tree with a root node and several children]
Empty-ply drawings of trees

Theorem

There exist 4-ary trees (maximum degree 5) not admitting any empty-ply drawing
Empty-ply drawings of trees

Theorem

There exist 4-ary trees (maximum degree 5) not admitting any empty-ply drawing
Empty-ply drawings of trees

Theorem

There exist 4-ary trees (maximum degree 5) not admitting any empty-ply drawing
Empty-ply drawings of trees

Theorem

There exist 4-ary trees (maximum degree 5) not admitting any empty-ply drawing
Empty-ply drawings of trees

Theorem
There exist 4-ary trees (maximum degree 5) not admitting any empty-ply drawing

Theorem [Di Giacomo et al. IISA 2015]
Binary trees (maximum degree 3) admit drawings with ply 2, which are also empty-ply
Ply and vertex-ply of planar drawings

Question [Di Giacomo et al. IISA 2015]

What happens if we restrict to planar drawings?
Is there a trade-off between ply and number of crossings?
Ply and vertex-ply of planar drawings

Observation [Di Giacomo et al. IISA 2015]

The natural drawing of a nested-triangle graph has linear (vertex-)ply, but they admit non-planar drawings with ply 2
Ply and vertex-ply of planar drawings

Theorem

Nested-triangle graphs admit planar drawings with ply 4
There exist graphs that require $\Omega(n)$ vertex-ply in any planar drawing, but that admit drawings with ply 5 and 3 crossings.
Theorem

There exist graphs that require $\Omega(n)$ vertex-ply in any planar drawing, but that admit drawings with ply 5 and 3 crossings.
Ply and vertex-ply of planar drawings

Theorem

There exist graphs that require $\Omega(n)$ vertex-ply in any planar drawing, but that admit drawings with ply 5 and 3 crossings.
There exist graphs that require $\Omega(n)$ vertex-ply in any planar drawing, but that admit drawings with ply 5 and 3 crossings.
Theorem

There exist graphs that require $\Omega(n)$ vertex-ply in any planar drawing, but that admit drawings with ply 5 and 3 crossings.
Ply and vertex-ply of planar drawings

Theorem

There exist graphs that require $\Omega(n)$ vertex-ply in any planar drawing, but that admit drawings with ply 5 and 3 crossings.
There exist graphs that require $\Omega(n)$ vertex-ply in any planar drawing, but that admit drawings with ply 5 and 3 crossings.
Ply and vertex-ply of planar drawings

Theorem
There exist graphs that require $\Omega(n)$ vertex-ply in any planar drawing, but that admit drawings with ply 5 and 3 crossings.

Suppose that (v_1, v_2) is the longest outer edge.
Ply and vertex-ply of planar drawings

Theorem

There exist graphs that require $\Omega(n)$ vertex-ply in any planar drawing, but that admit drawings with ply 5 and 3 crossings.

Edge (v_1, v_2) is longer than (u, v_1) and (u, v_2).

[Diagram of a triangle with vertices v_1, v_2, and v_3, and an inner point u.]
Triangle \((u, v_1, v_2)\) can be covered with a constant number of circles whose diameter is \(\frac{1}{4}\) of the length of \((v_1, v_2)\)

Theorem

There exist graphs that require \(\Omega(n)\) vertex-ply in any planar drawing, but that admit drawings with ply 5 and 3 crossings
Ply and vertex-ply of planar drawings

Theorem

There exist graphs that require $\Omega(n)$ vertex-ply in any planar drawing, but that admit drawings with ply 5 and 3 crossings.

One of these circles contains a linear number of x_1, \ldots, x_m.
The disks of these vertices have radius at least $\frac{1}{4}$ of (v_1, v_2).
Thus, each of them contains all the vertices in the circle.

Theorem

There exist graphs that require $\Omega(n)$ vertex-ply in any planar drawing, but that admit drawings with ply 5 and 3 crossings.

The disks of these vertices have radius at least $\frac{1}{4}$ of (v_1, v_2).
Thus, each of them contains all the vertices in the circle.
Open problems

- How hard is to test the existence of an empty-ply drawing?
- Do 3-ary trees (max-degree-4) admit empty-ply drawings?
- Do max-degree-3 (planar) graphs admit empty-ply drawings?
- Fill the gaps on complete bipartite graphs. $K_{2,13}$, $K_{3,10}$, $K_{4,7}$, $K_{5,5}$?
- What if we allow at most k vertices to lie inside each disk? Typical generalization for proximity drawings k-ply drawings or k-empty-ply drawings
Open problems

• How hard is to test the existence of an empty-ply drawing?

• Do 3-ary trees (max-degree-4) admit empty-ply drawings?

• Do max-degree-3 (planar) graphs admit empty-ply drawings?

• Fill the gaps on complete bipartite graphs.
 \(K_{2,13}, K_{3,10}, K_{4,7}, K_{5,5} \) ?

• What if we allow at most \(k \) vertices to lie inside each disk?
 Typical generalization for proximity drawings
 \(k \)-ply drawings or \(k \)-empty-ply drawings

Thanks for your attention!!!